0040-4039(94)02220-8

Pd(0)-CATALYZED ELIMINATION AND COUPLING OF ALLYLIC CYCLIC CARBONATES

Suk-Ku Kang,* Dong-Chul Park, Chan-Hee Park, and Ryung-Kee Hong Department of Chemistry, Sung Kyun Kwan University, Natural Science Campus, Suwon 440-746, Korea

Abstract: The alkyl substituted allylic cyclic carbonates 1a-d undergo elimination by using a catalytic amount of Pd(0) complex to form dienols 2a-b. However, on treatment of the unsubstituted or phenyl substituted allylic cyclic carbonates 1e and 1f with palladium(0) catalyst, deprotonation-elimination of π -allylpalladium complex followed by condensation with the other π -allylpalladium complex provided the coupled products 3a and 3b, respectively.

Chiral 2, 4-dienols are versatile Diels-Alder dienes in organic synthesis. As our program to utilize allylic cyclic carbonates via a π -allylpalladium complex in preparing useful chiral synthons, we have found that 2, 4-dienols can be prepared from the alkyl substituted allylic cyclic carbonates utilizing palladium-catalyzed elimination reaction. However, treatment of the unsubstituted or phenyl substituted allylic cyclic carbonates under the same conditions resulted in the formation of unusual coupled products, which are shown in Scheme 1.

$$MPMO = \begin{array}{c} OH \\ \hline PPh_3, THF, \Delta \\ R = Me, Et \end{array} \qquad \begin{array}{c} OH \\ \hline PPh_3, THF, \Delta \\ R = Me, Et \end{array} \qquad \begin{array}{c} OH \\ \hline R' \\ R = H, Me \\ \hline PPh_3, THF, \Delta \\ \hline PPh_3, THF, \Delta \end{array}$$

Scheme 1

The results of Pd(0)-catalyzed elimination and elimination-coupling are summarized in Table 1. The methyl substituted allylic cyclic carbonate 1a and 1b were reacted with a catalytic amount of Pd₂(dba)₃·CHCl₃ (5 mol %) and triphenylphosphine (20 mol %) in refluxing THF for 15 min to afford 2, 4-dienol 2a³ (entries 1 and 2). This elimination can be explained *via* the formation of π -allylpalladium complex followed by deprotonation-elimination to regenerate Pd(0)

Table 1. Pd(0)- Catalyzed Elimination and Coupling of Allylic Cyclic Carbonates^a

Entry	Substrate ^b	Product	Isolated Yield (%)
1	MPMO TO	<u>ОН</u> МРМО	93
2	MPMO O O O O	2a	91
3	MPMO	OH MPMO 2bd (E: Z = 12: 1)	89
4	Ic MPMO ===================================	(E: Z = 12: 1) 2b (E: Z = 12: 1)	85
5	Id MPMO :: in the second secon	мрмо	MPM 91
5	MPMO $\stackrel{\circ}{\underset{\circ}{\bigcup}}$ Ph $(Z:E=6:1)$	MPMO Ph O	мрм 90
7	MPMO + MPMO	OH OH	MPM 75
8	MPMO + MPMO	3c ⁶	80
9	1e Ib	MPMO OH	^OMPM 70
	1e 1g	3d	

^a All the reactions were run with the substrate(1 equiv) and $Pd_2(dba)_3$: CHCl₃ (5 mol %) and $Ph_3P(20 \text{ mol }\%)$ b MPM = Methoxyphenylmethyl

 $^{^{}c}\left[\alpha\right]^{25}_{D}$ -33.0 (c 0.3, CHCl₃) $^{-d}\left\{\alpha\right]^{25}_{D}$ -11.0 (c 0.5, CHCl₃)

species. It is noteworthy that (Z)-and (E)-ethyl substituted allylic carbonates $1c^4$ and $1d^4$ afford identical product 2b. The ratio of (E)- and (Z)-isomers for the methyl group of the compound 2b at C(6) was ca 12: 1 checked by GC-MS (entries 3 and 4).5 It is presumed that in these elimination equilibration of π - and σ -complexes must be faster than elimination of the proton in the π allylpalladium complex. In contrast to the above cases, when the allylic cyclic carbonate 1e was subjected to reflux with a catalytic amount of Pd₂(dba)₃·CHCl₃ and triphenylphosphine, the dimerized compound 3a was obtained in 91% yield (entry 4). The formation of 3a could be rationalized via a π -allylpalladium complex, which was eliminated to give a unusual enolate. The enolate thus formed as a nucleophile was subjected to allylic substution with the π -allyl complex of allylic cyclic carbonate 1e to form the coupled product 3a and the liberated Pd(0) maintained in the catalytic cycle (Scheme 2). Similarly, the phenyl substituted cyclic carbonate 1f provided 3b³ under the same conditions (entry 6). An interesting finding was that when 1e was treated with 1a or 1b in THF under the same conditions, the cross-coupled adduct 3e3.6 was obtained as a sole product in high yields without any incidental formation of 2a (entries 7 and 8)(Scheme 2). The reaction of 1e and dienylic cyclic carbonate 1g together afforded ε-substituted allylic alcohol 3d in 70% vield (entry 9).

Scheme 2

The typical procedure is as follows. Preparation of 2a: To a stirred solution of $Pd_2(dba)_3$ CHCl₃ (42 mg, 5 mol %) and Ph_3P (42 mg, 20 mol %) in dry THF(1 mL) was added 1a (222 mg, 0.40 mmol) in dry THF(1 mL). After stirring at reflux for 15 min, the reaction mixture was cooled and THF was evaporated. The residue was separated by SiO_2 column chromatography (EtOAc/hexanes 1:1, $R_r = 0.61$) to afford 2a (174 mg, 93%).

In summary, we have developed an efficient route to optically pure (*E*, *E*)-2,4-dienols by Pd(0)-catalyzed elimination of the alkyl substituted allylic cyclic carbonates. Further studies on mechanistic aspects including stereochemical courses in the coupling reaction is in progress.

Acknowledgment. Generous financial support by KOSEF-OCRC and Ministry of Education(BSRI-94-3420) is gratefully acknowledged.

References and Notes

- (a) Kang, S-K.; Kim, S-G.; Lee, J-S. Tetrahedron: Asymmetry 1992, 3, 1139.
 (b) Kang, S-K.; Park, D-C.; Cho, D-G.; Chung, J-U.; Jung, K-Y. J. Chem. Soc. Perkin Trans 1. 1994, 237.
 (c) Kang, S-K.; Park, D-C.; Jeon, J-H.; Rho, H-S.; Yu, C-M. Tetrahedron Lett. 1994, 35, 2357.
 (d) Kang, S-K.; Park, D-C.; Rho, H-S.; Yu, C-M.; Hong, J-H. Synth. Commun., in press.
- Elimination of allylic acetates has been known: Tsuji, J.; Yamakawa, T.; Kaito, M.; Mandai, T. Tetrahedron Lett. 1978, 24, 2075.
- 3. Satisfactory spectral and physical data were obtained for all new compounds and are in accord with the assigned structure. Selected data are as follows. 2a: TLC, SiO₂, EtOAc/hexanes 1: 1, R_r = 0.61. ¹H NMR(300 MHz, CDCl₃) δ 2.50(bs, 1H), 3.35(dd, 1H, J = 16.5, 8.15 Hz), 3.50(dd, 1H, J = 9.6, 3.4 Hz), 3.80(s, 3H), 4.40(m,1H), 4.50(s, 2H), 5.10(d, 1H, J = 9.0 Hz), 5.20(d, 1H, J = 16 Hz), 5.70(dd, 1H, J = 14.5, 6.1 Hz), 6.30(m, 2H), 6.90(d, 2H, J = 7.3 Hz), 7.25(d, 2H, J = 7.3 Hz). IR(neat) 3500, 2959, 2863, 1610, 1246 cm⁻¹ MS(m/e) 235(M⁺+1), 234(M⁺) 121(base peak). [α]²⁵₀ = -34.2 (c 0.5, CHCl₃). **2b**: TLC, SiO₂, EtOAc/hexanes 1 : 2, R_f = 0.50. ¹H NMR(300 MHz, CDCl₃) δ 1.75(d, 3H, J = 7.0 Hz), 2.50(d, 1H, J = 3.1 Hz), 3.40(m, 1H), 3.50(m, 1H), 3.80(s, 3H), 4.40(m,1H), 4.50(s, 2H), 5.40-5.80(m, 2H), 6.0(m, 1H), 6.30(dd, 0.5H, J = 15.2, 10.3 Hz), 6.65(dd, 0.5H, J = 15.2, 10.3 Hz), 6.90(d, 2H, J = 7.3 Hz), 7.25(d, 2H, J = 7.3 Hz). IR(neat) 3550, 2959, 2863, 1611, 1248 cm⁻¹. MS(m/e) 248(M⁺), 137, 121(base peak). $[\alpha]_{D}^{25} = -11.0$ (c 0.5, CHCl₃). 3a: TLC; SiO₂, EtOAc/hexanes 1: 1, R_f = 0.35. ¹H NMR(300 MHz, CDCl₃) δ 2.25(m, 1H), 2.35(bs, 1H), 2.50(m, 1H), 3.30(m, 2H), 3.45(dd, 1H, J = 9.6, 3.4 Hz), 3.80(s, 6H), 4.10(d, 2H, J = 4.6 Hz), 4.25(m, 1H), 4.48, 4.49(s, 4H), 5.15(dd, 2H, J = 15.6, 10.8 Hz), 5.45(ddd, 1H, J = 15.5, 6.1, 1.4 Hz), 5.70(m, 4.25(m, 1H), 4.48, 4.49(s, 4H), 5.15(dd, 2H, J = 15.6, 10.8 Hz), 5.45(ddd, 1H, J = 15.5, 6.1, 1.4 Hz), 5.70(m, 1H), 4.48, 4.49(s, 4H), 5.15(dd, 2H, J = 15.6, 10.8 Hz), 5.45(ddd, 1H, J = 15.5, 6.1, 1.4 Hz), 5.70(m, 1H), 4.48, 4.49(s, 4H), 5.15(dd, 2H, J = 15.6, 10.8 Hz), 5.45(ddd, 1H, J = 15.6, 10.8 H2H), 6.90(d, 4H, J = 7.3 Hz), 7.30(d, 4H, J = 7.3 Hz). IR(neat) 3417, 2956, 2858, 1722, 1610, 1246 cm⁻¹. MS(m/e) 440(M⁺), 121(base peak). 3b: TLC, SiO_2 , EtOAc/hexanes 1 : 2, $R_f = 0.19$. ¹H NMR(300 MHz, $CDCl_3$) δ 2.30(bs, 1H), 3.25(dd, 1H, J = 9.4, 8.07 Hz), 3.45(dd, 1H, J = 9.5, 3.4 Hz), 3.80(s, 6H), 3.90(m, 2H), 4.10(d, 2H, J = 4.6 Hz), 4.25(m, 1H), 4.41, 4.47(s, 4H), 5.50(dd, 1H, J = 15.2, 5.2 Hz), 5.85(dd, 1H, J = 15.2, 5.2 Hz)15.9, 8.6 Hz), 5.95(ddd, 1H, J = 15.7, 7.4, 1.2 Hz), 6.20(d, 1H, J = 15.9 Hz), 6.85(d, 4H, J = 7.3 Hz), 7.10(d, 4H, J = 7.3 Hz), 7.20(m, 10H). IR(neat) 3500, 2922, 2858, 1724, 1611, 1250 cm⁻¹. MS(m/e) 592(M⁺), 471, 121(base peak). 3c: TLC, SiO₂, EtOAc/hexanes 1: 1, $R_f = 0.36$. H NMR(300 MHz, CDCl₃) δ 0.95(d, 3H, J) = 7.1 Hz), 2.35(bs, 1H), 2.65(m, 1H), 3.10(dd, 1H, J = 12.0, 6.0 Hz), 3.25(dd, 1H, J = 9.4, 8.1 Hz), 3.45(dd, 1H, J = 9.4, 8. 1H, J = 9.5, 3.4 Hz), 3.80(s, 6H), 4.0(d, 2H, J = 4.6 Hz), 4.25(m, 1H), 4.50(s, 4H), 5.15(dd, 1H, J = 10.2, 1.52 Hz), 5.40(m, 1H), 5.60(m, 2H), 6.90(d, 4H, J = 7.3 Hz), 7.25(d, 4H, J = 7.3 Hz). IR(neat) 3500, 2956, 2863, 1722, 1610, 1250 cm⁻¹. MS(m/e) 454(M⁺), 333, 121(base peak). 3d: TLC, SiO₂, EtOAc/hexanes 1: 1, $R_t =$ 0.37. H NMR(200 MHz, CDCl₃) δ 2.40(m, 2H), 2.65(m, 1H), 3.35(m, 2H), 3.50(dd, 1H, J = 9.4, 3.4 Hz), 3.80(s, 6H), 4.10(d, 2H, J = 4.6 Hz), 4.40(m, 1H), 4.50(s, 4H), 5.20(dd, 2H, J = 7.1, 4.0 Hz), 5.30(m, 1H),5.60-5.80(m, 2H), 6.0(m, 1H), 6.60(dd, 1H, J = 14.9, 10.4 Hz), 6.90(d, 4H, J = 7.3 Hz), 7.25(d, 4H, J = 7.3 Hz). IR(neat) 3417, 2956, 2858, 1722, 1611, 1250 cm⁻¹. MS(m/e) 466(M⁺), 438, 121(base peak).
- 4. The compound of 1c was prepared from (2S, 3S)-2,3-O-isopropylidenedioxy-1,4-butanediol: (a) NaH, MPMCI, DMF, -30 °C, 2 h (80 %) (b) (COCl)₂, DMSO, Et₃N, CH₂Cl₂ -78 °C, 1 h (98%) (c) CBr₄, Ph₃P, CH₂Cl₂, 0 °C, 3 h, (70 %) (d)nBuLi, THF, -78 °C, 2 h (75 %) (e) nBuLi, EtBr, THF/ HMPA (3:1), -40 °C, 1 h (60 %) (f) H₂, Pd/CaCO₃ (quinoline), MeOH, rt, 12 h (90 %) (g) HCl(10 %), THF, rt, 12 h (80 %) (h) CO(Im)₂, CH₂Cl₂, rt, 30 min (85 %) and the compound 1d was also prepared from(2S, 3S)-2,3-O-isopropylidenedioxy-1,4-butanetriol: (a)-(e): the same as the above sequence, (f) HCl(10 %), THF, rt, 12 h (80 %) (g) LAH, THF/ dioxane (1:7), reflux, 8 h (65 %) (h) CO(Im)₂, CH₂Cl₂, rt, 30 min (85 %). (2S, 3S)-2,3-O-isopropylidene dioxy-1,4-butanediol was prepared from diethyl L-tartrate by the procedure of Feit. See, Feit, P. W. J. Med. Chem. 1964, 7, 14.
- 5. The ratio of (E)- and (Z)- isomers for the methyl group at C(6) was determined by GC-MS analysis using VG-Instrument Trio 2000 GC-MS system (column: PONA, 25m, 0.2mm, 0.5 μm, oven temp.: 180 °C- 280 °C, carrier gas: He, injection temperature: 250 °C). The values of the retention time for (E)- isomer and (Z)- isomer were 5.19 min and 4.77 min, respectively.
- 6. The ratio of (5S)- and (5R)- at C(5) position was 3: 2 and 3: 1, respectively, which were deduced by the chemical shift for the methyl group in 300 MHz ¹H-NMR by comparison with the very similar compound in reference 1(d). The chemical shift for the (5S)- methyl group in 3c showed a doublet at δ 0.95, whereas (5R)-methyl group showed at δ 0.96. The stereochemistry of C(6) position has not been determined.